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Critical Behavior and Associated Conformal Algebra 
of the Z 3 Potts Model 

VI. S .  D o t s e n k o  I 
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The conformal algebra for operators of the Z 3 model at the phase transition 
point is built. Critical exponents are found in this approach as solutions of 
simple algebraic equations, which are consistency conditions of the algebra. 
Multipoint correlation functions obey linear differential equations. Some solu- 
tions are given for the four-point correlation functions of the Z 3 model at the 
phase transition point. 
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The partition function of the two-dimensional (2D) Z 3 model of lattice 
statistics, also called the three-component Potts model, (I) can be defined as 
follows: 

Z ( f i ) =  ~] e x p ( + , 8 ~  ~ + ~x~ ) 
{~} x,a 2 

= I 1 
Its discrete spin variables [o = exp(@), 8 = exp( -  iq0); p = 0, + 27r/3] inter- 
acting with nearest neighbors only, are placed at sites of a 2D lattice; 
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x = (n, m) are lattice sites; a ~ a = 1, 2 are two basic vectors of the lattice 
- - fo r  simplicity we can consider a square lattice. This model is known to be 
self-dual, the same as the 2D Ising model (IM). At its self-dual point 
/3 c = ~ ln(fJ- + 1) it undergoes a second-order phase transition. (2) 

At present it is almost universally accepted (3) that critical properties 
of the Z 3 model are the same as those of the hard hexagon model (HHM), 
which has been solved recently by Baxter, (4) and thereby the critical 
exponents of the model are thought to be known exactly. 

It is also known that the Z 3 model itself becomes soluble (integrable) 
just at the phase transition point. (2) It raises the possibility that a contin- 
uum theory should exist, simpler than the lattice one, to which the lattice 
model reduces at the critical point, and which would be solvable by 
continuum theory methods, making it possible to study exactly the critical 
behavior of the model (its critical exponents and critical multipoint cot- 
relators). 

It has been suggested some time ago (5) that critical fluctuations in 
statistical system are not only scale invariant but also conformal invariant, 
which is a sort of localization of scaling symmetry. Yet for general dimen- 
sions of space, conformal transformations make only a finite parameter 
group. It has been shown in Ref. 5 that conformal symmetry fixes the form 
of the three-point correlators, in addition to two-point ones which are fixed 
by scaling symmetry. 

The situation is drastically different for 2D systems. In two dimensions 
the "small" conformal group can be extended to the infinite-parameter 
general conformal group, given by all analytic transformations. (6) Being 
infinite dimensional this symmetry could provide "enough means" for 
solving 2D conformal invariant systems exactly. Different theories would 
arise as different representations of the corresponding conformal algebra. It 
has been shown in Ref. 6 how 2D IM can be solved in this way. In this 
paper we present the conformal algebra of the Z 3 model and study some of 
its basic properties. 

From now on by the Z 3 model we mean its scaling limit theory at the 
phase transition point. In fact our problem will be to build this theory and 
solve it. 

The first question is what are the basic operators of the model. It is 
natural to have operators o(x) and ~(x), which are the scaling limit of 
lattice spin variables in (1), and, also, the energy operator e(x), which 
results from the scaling limit of the interaction term axSx, + ~xox, in the 
exponent of (1). All operators will be defined so that their statistical average 
is zero: C o ) =  ( ~ ) =  ( c ) =  0. From their lattice origin and usual scaling 
considerations it is natural to expect  the following operator algebra rela- 
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tions for o, ~, e: 

1 2 A  . I +  1 2 A  - - /X . e ( x ' ) +  . . .  ~(x)~(x') + ~(~)~(x ' )~ I~ - ~'1 Lx - ~'-----~ 

, ( x ) ~ ( x ' ) -  Ix i x'l & .  ~(x') + - . .  (2) 

1 2A~. I +  . - -  
~ ( x ) ~ ( x ' ) - -  i x  - x , i  

Here I is a unit (identity) operator of the algebra [ I .  o ( x ) =  o ( x ) ,  so o n ,  

<I> = 1], and A o and A~ are the critical dimensions of operators o,e. 
In the following we shall often write such operator relations in a 

compact form skipping the standard sealing factors: 

a ~ + ~ a ~ I + e +  . . .  

e a s e +  . ' . ,  e a s e +  . . . ,  E ~ - - I  + . . .  (2') 

o a ~  + . . . ,  ~fi, . .~a + . . .  

Thus, (2') are the operator algebra relations which we should expect from 
the correct conformal theory. 

Conformal invariant theory should always possess one more operator 
- - the  energy-momentum tensor Tab(X) ,  which is related to conformal 
transformations. In 2D conformal theory it is more convenient to use 
complex coordinates ( z  x 1 + i x  2, ~ = x I - ix2). Infinitesimal conformal 
transformations are defined as 

~ +  ~(~), ~e+~(~) 
(3) 

; ,(z,~)-,  ~(z,~) + [~(~)< + ~'(z)A + ~(~)% + ~'(~)~]~(~,~) 

where ~p is a conformal operator; A, A are its conformal dimensions; a(z)  is 
a n  arbitrary analytic function (small, in a finite region of the z plane): 

c~(z)= ~ G z  ~+~ (4) 
; /~  - - [  

The infinitesimal parameters are {G) .  Choosing a ( z ) =  a = const, and 
a(z)  = a .  ( z - z 0 )  it is easy to show that for an arbitrary correlator 

<~2 . . - >  

~ <  Tzz(Z , -F)~dI (Z1ZI )~Y2(Z2Z2)  . . . > ( 5 )  

< Tz,(Z , Z ) I ~ I ( Z I Z I ) ~ d 2 ( Z 2 Z 2 )  . . . > ( 6 )  

if z :/: z i. Equation (5) shows that correlator <T~p1~, 2 . . . > is an analytic 
function of z only, for z 4= z i. For general cr (z), correlators of a conformal 
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invafiant theory satisfy the following relations: 

= . [O~(Zi)O i "4- miO~'(Zi) q'-  ~(Zi)O i "1- A i O ~  (Zi)]<q] 1 . . . > (7) 

Relation (7) shows that the conformal transformation splits into indepen- 
dent z and g parts. This fact allows the formal reduction of 2D conformal 
invariant theories to ID ones, dependent on z only. Conformal invariance 
ensures that dependence on s in final expresssions can easily be restored 
using symmetry considerations and some other requirements, as, e.g., the 
reality condition on correlators of real operators. Some examples of recov- 
ering physical correlators out of conformal ones will be given at the end of 
the paper, but now we suppress all ~ dependence altogether. Note that the 
conformal dimension A of real operators should be one half of its physical 
critical dimension Aph: 

<%(z,~)+(z' ,Y)>--[z 1 2kph = 
z' I 

which becomes 

( z  - ~ , ) a ~ ( ~  - ~ , )  
A~h 

@(z)~,(z '))~ (z 1 z') APh =- (z --1 z') 2& 

if ~ dependence is suppressed. Finally (7) becomes 

> = N  - -  + o i ( q , ~ . . . >  (8) -'c a z ' ~ ( z ) < r ( z ) + ' ( z ' )  ' ' " 7 ( z -  ~,)~ z -  ~, 

Because a(z) is an arbitrary function along C Eq. (8) can be rewritten as (6) 

( mi(z ~Z/) 2 1 ) < r ( ~ ) r  . . .  > = ~ ]  + ~, (q, ,  . . .  > (9)  
�9 Z - -  g i 

which is the conformal Ward identity (WI). 
To derive a closed equation for the correlator (~b I . . . ) in the WI (9), 

one needs the operator expansion for T(z)~k(z O, as z--> zl: 

~1 1 

+ q,~-~(~,) + (z - z,)~,~-~(<) + . . -  (lO) 
. Expansion in integer powers of ( z -  z~) is ensured by analyticity of 

{ T ( z ) r  ). The first two terms in (10) are fixed by (9). Operators 
standing at higher powers of (z - zl) can contain corresponding derivatives 
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of tp and, in principle, new operators: ~( -2 ) (Z1)  = C2O21p(Z,) 4- X2(Zl). Sup- 
p o s e  for a moment that X2 = 0 and see what theory will result. Multiplying 
(10) by ~(z2) and taking the average we obtain 

A, 1 
( T ( ~ ) ~ ( 2 , ) ~ ( 2 2 ) )  . . . .  (2  - z,) 2 z - z, 

+ O ( z  - z , )  

Comparing this expansion with the WI (9) written for the correlator 
(tp(z,)~(z2)) we find C 2 = 3/2(22 h + 1). Now, for arbitrary correlator 

1 
a ,+ C2 ~ l  ~ (Zl_Z2)  2~ 

(~, . . .  ) we have 

[ A, 1 3 0~](~, ) 
- -  + 01+ . . .  ( T ( z ) ~ , ( Z , )  . . . > z - * z ,  ~ ( z  - -  z , )  2 Z -- Z, 2(2A, + 1) 

+ o ( ~  - z,) (11) 
Again, comparing (1 l) with the corresponding expansion derived from WI 
(9) we find a closed linear differential equation for the conformal correlator 
(qq  . . .  ):~6~ 

3 0 2 ( ~ '  " " '  ) =  (Z -- 4- 0i (@'  " ""  ) (12)  
2(2A 1 + 1) i - -  Z i )  2 Z - -  Z i 

Let us leave now generalities for a moment and explore possible 
consequences of this equation for the Z 3 model. In this model there is a 
nonzero three-point correlator (e~o). The general form of this correlator is 
fixed by the "small" conformal group (5) 

(e (z,)8 (z2)o (z3)) 1 ( z~-  z2)~.(z~- z3)<(z~ - z3) 2~o-~. (13) 

Suppose, on the other hand, that e(z) is such an operator that e(-2)(z) in 
the expansion (10) reduces to C2O2e(z), so that the equation (12) is valid. To 
check this conjecture, put (13) into (12). We obtain then an equation for the 
critical dimensions: 

A~ - 2(2A + 1) (14) 

Take for A~ the numerical value obtained from the critical exponents 
c~ = 1//3, fl = 1/9 of the HHM. (4) Standard scaling relations give (Ac)ph 
= 4/5,  A = 2/5.  Then from (14) we find A = 1/15, which is in agreement 
with (Ao)ph = 2/15 for HHM. 

Note that for IM values of A = 1/2, A o = 1/16 equation (12) will also 
be satisfied by the correlator (13) if we take o as the operator ~1 in (12) 
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instead of e. For the Z 3 model this is not true, which implies that in the 
expansion (10) for Ta the operator o (-2) 4= C2~2o. This only means that the 
conformal representation of the Z 3 model will be less trivial than that 
of IM. 

This representation will shortly be given, but first let us remark on one 
intuitively appealing way to derive all the indices of the Z 3 model, not just 
a relationship among them. The Z 3 model is self-dual, and has a dual 
(disorder) operator /~. The operator q~, which results from the product 
o , ~ b ,  has properties of a parafermion with spin 1/3. (l~ In particular it is 
easily checked in the lattice theory that the correlator @(z)~(z l )  . . .  ) is 
threefold defined--i t  acquires a factor exp(i2~z/3) as z goes round z~. For 
+g we have an operator algebra relation: 

q~(z) ~ ( z , ) ~  1 .o (z , )  + . . .  (15) 

Here we use A = 2Xo. Using this relation for the correlator ( @ . . . )  we 
obtain 

(+(z)  g ( z l ) . . . ) ~ z ~  1 ( z -  z,) ~ < , ( z , ) . . .  > (16) 

We must have a factor exp(i2~r/3) as z goes round z 1 . It fixes A# = 1/3, at 
least as a very probable value. Note that we essentially used here that the 
spin- l /3  operator ~b should not depend on 2 (similar to IM fermion O)) so 
that A~ = (A+)ph , ( ~  = 0), and so there is no additional factor 1/(5 -21)  6. 
in (16) for the physical correlator that we have on the lattice. 

Operator ~ is created in the product o F, similar, in a sense, to operator 
c : o 6 - ~ c ;  see (2'). Suppose that tp, the same as ~, satisfies Eq. (12). 
Applying it to correlator (tp~8) we derive an equation: 

A~ -- A~ 
Ao -- 2(2A+ + 1) (14') 

For A~ = 1/3 we find Ao = 1/15, which is the correct value. For fixed 
Ao = 1/15 the equation (14') has a second solution for A~, which is of 
course A = 2/5 ,  corresponding to correlator (eSa) considered above. 

This way of building a conformal algebra for the Z 3 model looks most 
natural. Yet certain difficulties arise (which we have not overcome yet) in 
building the full representation of the algebra that would include a, ~, /x, g, 

e, u ~ o o -  oo, ~ o l x ,  ~ g ,  ~---,og, ~ .  Perhaps these difficulties are 
related to the degeneracy among the basic operators (oS/~g have the same 
dimension Ao). So in this paper we shall stick to the simplest nondegenerate 
subalgebra of the Z 3 model-- that  made by e and S = o + ~. For these 
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operators we should expect the following relations [cf. (2')]: 

S S ~ I  + S + e + . . . ,  ~ S ~ S  + . . . ,  c c ~ I  + . . .  (2") 

Let us return now to the expansion (10). As remarked above in the Z 3 
model S (-23 4: C2~2S. We have to look at higher-level operators [operators 
standing at higher powers of (z - zl) in expansion (10)] in the search for 
similar relations on higher levels which would make it possible to derive a 
closed equation on correlators with S. There is a formal technique for doing 
this. (6) Let us expand T ( z )  in powers of (z - zl) 

T ( z )  = Z Ln(Z1) 
(z - z,) "+2 (17) 

and put it into (10). We obtain 

1 (18) Z(g)~(Zl) 
( z  - z , )  "+2 

Here by definition •(") = L,+. From the WI (12) it follows that 

Ln+ = 0, n > 0, L0~ = A. ~b, L _ , 4  = O~ (19) 

Operators ~b ~ - ~  = L _ ~ ,  n/> 2 are, in general, new ones, created from the 
basic operator ~, by conformal transformations. The Nth level linear space 
of such "conformal followers" of ~ contains operators 

~(-n~,- . . . . .  -nk) = L _ , , L  ~ 2 . . . L _ ~ k ~ p  

k (20) 

171 < 172 < " " " < l k ,  2 ni= N 
i=1 

OPerators (Ln) do not commute. They form the Virasoro algebra (~) 

C 6~ m" n( n2 1) (21) [ L , , L m ]  = (n - m ) L , +  m + - ~  , -  - 

The number C here is a coefficient in (T(z)T(z')~ = ( C / 2 ) / ( z  - z') 4 and it 
is a fundamental parameter of a particular conformal algebra, togther with 
the dimensions {Ai) of its basic operators. 

In general the operators (20) are linearly independent. But there are 
special basic operators ~, whose dimension A satisfies the equation: ~j2~ 

24 + 17m2- 1 �9 2~+ (m2 1)(C24 - 1 3 )  + n m 2 - 1  

172 - m2) 2 
+ - 0  16 (22) 

for which not all of the operators (20) are independent. In (22) n, m are any 
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integer numbers such that n �9 m = N (on higher levels there can be several 
degenerate linear combinations). It can be shown, in particular, that 
correlators with such special operators satisfy the Nth order linear differen, 
tial equation. (6) 

Let us solve (22) for A. We find 

( - l , ,  - - - 

An'm = 4 (23) 

7 = ( 2 [ ~ - ( ~  2 1/4) ' /2]} 1/2, ~ = ( 1 3 - C ) / 2 4  

Now we look at the Z 3 algebra. We already know that a "conformal tail" 
[states (20)] of the operator e is degenerate on the second level. In fact, 
e (-2) = C202~, which means that L _ a e -  C2L21c = 0  [see (19)]. On the 
second level Eq. (22) becomes 

2A(5 -  8A) 
C -  2A + 1 (24) 

Putting 2x, = 2/5, we find for the Z 3 conformal algebra C = 4/5. Then (23) 
becomes 

( 5 n -  6m) 2 -  1 (25) 
Y = (5/6)1/2' An'rn = 120 

This set of dimensions is given in Table I. Notice that all the operators are 
doubly represented in Table I, so that we have in fact 10 basic conformal 
operators, 

Let us look at their algebraic relations. Consider a correlator @l,2(z) 
+, m(Z'). . ). This correlator satisfies Eq. (12) for z. Take z ---> z 1 

Table I. 

6~  
120 +o 

6j_3 
120 

7 
3 
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and  put  it into Eq. (12)�9 Then  most  singular terms give the characteristic 
equat ion for A A . Solving it we find A A = A,, m_+l. Thus  we have 

~Jl,21l~n,m~tPn,m+ l Jr tPn,m_ I (26) 

In  a similar way, the following relations can be derived: 

l~l,3@n,m--r Jr lPn,m+2 Jr r 

tP3,2r Jr Cn,m--I Jr tPn+2,m+l Jr r 

+ r I + r  1 (27) 

l~ 3,3 r ~ t~n.m Jr tPn,rn + 2 Jr @n,m -- 2 Jr r Jr" t~n+2,m+2 -'}- @n+2,m-2 Jr " " " 
and  so on. Looking now at Table  I we find that the physical relations (2") 
for operators (e, S )  are fulfilled. We also find that operators do not  couple 
to four  operators in the second row, so that  we are left with six basic 
operators, those in Table  II. 

N o w  we just  list some results for the simplest mult ipoint  correlation 
functions of the Z 3 model:  

<lPn,m(Zl)f'(a2)tPn,m(a3)f'(Z4))~alWl(Ol, ~, T; I"1) Jr a2w2( 0/, /~, Y; g) (28) 

(E1C2t[3s ( Z I 3 Z 2 4 ) 4 / 5  [ ( 8 1 2 ) ] 
= " a iw l  5 ' 5 ' 5 ;rl + a 2 w z ( . ' ' ' r l )  Z 12Z23Z34Z 14 

(29) 

(ZI3) 2/3 

(SllS2S3~4> = (Z12Z23Z34ZI4)2/5 �9 a l w ]  5 ' 5 ' 5  ' 0  + a 2 w 2 ( - . . ;  

(30) 

Here  ~ = ( z 1 2 z 3 4 ) / ( z 1 3 z 2 4 ) ;  g',,m = X ,  Y , Z ;  the func t ions  w]( . . . ;~),  

5 
4 

3 
2 
1 

Y 

Z 

I 

Table II. 

X 

X 

Z 
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w2( �9 �9 �9 ;7) are two solutions of the hypergeometric equation with parame- 
ters 

5 ( n +  1 ) - 6 ( m +  1) 5 n - 6 ( m -  1) 
% ' ~ =  5 ' /?~'m = 5 

5(n + l) -- 6m 
"&m = 5 

To obtain the physical correlators, depending on (zi,~i}, we just choose 
any conformal solution w(~) in (28), multiply it by its complex conjugate 
~(~) and sum the resulting product over a monodromy group (13~ of w(~): 

<(zi} (~i} > =  [z,] 1 �9 �9 2w(gm (n)" ( 3 1 )  

A simple example of this technique gives the correlator (oooo)  of the IM. 
As found in Ref. [6] the conformal solution for this correlator is given by 

Z12Z23Z34ZI4 " W(T~) 

Here w(~) = [1 + (1 - ~)~/2]1/2, and it has a monodromy around ~ = 1; 
gl :[1 + ( 1 -  ~)1/211/2--~[1- ( 1 -  ~/)1/211/2, (gl)2 = 1. In this case (31) be- 
comes 

~01020304) = ZI3Z24 1/4 
Z | 2Z23Z34 Z 15 

+ [ 1 -  ( 1 -  ~ ) 1 / a ] ' / 2 [ 1 - ( 1 -  ~) ' /2] '/2} 

ZI2Z23Z34zI4Z13Z24 1/4. {1 -{- (~)1/2[(1 -- ~)(1 -- ~)l 1/2}1/2 

- z ' 3 z 2 4  + ( 3 ~ 4 )  + ( 2 ~ 3 )  (32) 
Z12Z23Z34ZI4 

which coincides with the known result. (14~ Application of this technique to 
the Z 3 correlators is straightforward. This work is under way now. 
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